Foxa1 and Foxa2 Are Essential for Sexual Dimorphism in Liver Cancer

نویسندگان

  • Zhaoyu Li
  • Geetu Tuteja
  • Jonathan Schug
  • Klaus H. Kaestner
چکیده

Hepatocellular carcinoma (HCC) is sexually dimorphic in both rodents and humans, with significantly higher incidence in males, an effect that is dependent on sex hormones. The molecular mechanisms by which estrogens prevent and androgens promote liver cancer remain unclear. Here, we discover that sexually dimorphic HCC is completely reversed in Foxa1- and Foxa2-deficient mice after diethylnitrosamine-induced hepatocarcinogenesis. Coregulation of target genes by Foxa1/a2 and either the estrogen receptor (ERα) or the androgen receptor (AR) was increased during hepatocarcinogenesis in normal female or male mice, respectively, but was lost in Foxa1/2-deficient mice. Thus, both estrogen-dependent resistance to and androgen-mediated facilitation of HCC depend on Foxa1/2. Strikingly, single nucleotide polymorphisms at FOXA2 binding sites reduce binding of both FOXA2 and ERα to their targets in human liver and correlate with HCC development in women. Thus, Foxa factors and their targets are central for the sexual dimorphism of HCC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrative Genomic Analysis Identifies That SERPINA6-rs1998056 Regulated by FOXA/ERα Is Associated with Female Hepatocellular Carcinoma

The human forkhead box A1 (FOXA1) and A2 (FOXA2) transcription factors have been found to control estrogen and androgen signaling through co-regulating target genes with sex hormone receptors. Here we used an integrative strategy to examine the hypothesis that genetic variants at FOXA1/2 binding elements may be associated with sexual dimorphism of hepatocellular carcinoma (HCC) risk. Firstly we...

متن کامل

Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer.

FOXA1 and FOXA2, members of the forkhead transcription factor family, are critical for epithelial differentiation in many endoderm-derived organs, including the pancreas. However, their role in tumor progression is largely unknown. Here, we identified FOXA1 and FOXA2 as important antagonists of the epithelial-to-mesenchymal transition (EMT) in pancreatic ductal adenocarcinoma (PDA) through thei...

متن کامل

The ratio of FoxA1 to FoxA2 in lung adenocarcinoma is regulated by LncRNA HOTAIR and chromatin remodeling factor LSH

The lncRNA HOTAIR is a critical regulator of cancer progression. Chromatin remodeling factor LSH is critical for normal development of plants and mammals. However, the underlying mechanisms causing this in cancer are not entirely clear. The functional diversification of the FOXA1 and FOXA2 contributes to the target genes during evolution and carcinogenesis. Little is known about the ratio of FO...

متن کامل

Genome-Wide Location Analysis Reveals Distinct Transcriptional Circuitry by Paralogous Regulators Foxa1 and Foxa2

Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determi...

متن کامل

Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-Regulated in Nonalcoholic Fatty Liver

Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2012